Efficient on-chip source of microwave photon pairs in superconducting circuit QED
نویسنده
چکیده
We describe a scheme for the efficient generation of microwave photon pairs by parametric down-conversion in a superconducting transmission line resonator coupled to a Cooper-pair box serving as an artificial atom. By properly tuning the first three levels with respect to the cavity modes, the down-conversion probability may reach the percentage level at good fidelity. We show this by numerically simulating the dissipative quantum dynamics of the coupled cavity-box system and discussing the effects of dephasing and relaxation in the solid state environment. The setup analyzed here might form the basis for a future on-chip source of entangled microwave photons, e.g., using Franson’s idea of energy-time entanglement.
منابع مشابه
Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED
Stark shift on a superconducting qubit in circuit quantum electrodynamics (QED) has been used to construct universal quantum entangling gates on superconducting resonators in previous works. It is a second-order coupling effect between the resonator and the qubit in the dispersive regime, which leads to a slow state-selective rotation on the qubit. Here, we present two proposals to construct th...
متن کاملCircuit QED: Recent Results in Quantum Optics with Superconducting Circuits
Circuit QED1 is an approach for studying quantum optics in a superconducting integrated circuit. By combining a one-dimensional transmission-line cavity that stores microwave photons and a superconducting qubit that plays the role of an artificial atom, one can easily enter the strong coupling limit of cavity QED. In recent experiments, we attain couplings that are several percent of the qubit ...
متن کاملGenerating single microwave photons in a circuit.
Microwaves have widespread use in classical communication technologies, from long-distance broadcasts to short-distance signals within a computer chip. Like all forms of light, microwaves, even those guided by the wires of an integrated circuit, consist of discrete photons. To enable quantum communication between distant parts of a quantum computer, the signals must also be quantum, consisting ...
متن کاملImplementation of Traveling Odd Schrödinger Cat States in Circuit-QED
We propose a realistic scheme of generating a traveling odd Schrödinger cat state and a generalized entangled coherent state in circuit quantum electrodynamics (circuit-QED). A squeezed vacuum state is used as the initial resource of nonclassical states, which can be created through a Josephson traveling-wave parametric amplifier, and travels through a transmission line. Because a single-photon...
متن کاملMicrowave photon detector in circuit QED.
In this Letter we design a metamaterial composed of discrete superconducting elements that implements a high-efficiency microwave photon detector. Our design consists of a microwave guide coupled to an array of metastable quantum circuits, whose internal states are irreversibly changed due to the absorption of photons. This proposal can be widely applied to different physical systems and can be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007